Inhibition of NF-κB signaling in human dendritic cells by the enteropathogenic Escherichia coli effector protein NleE.
نویسندگان
چکیده
Intestinal dendritic cells (DCs) send processes between epithelial cells into the gut lumen to sample pathogens. Noninvasive enteropathogenic Escherichia coli (EPEC) colonize the gut using a type three secretion system (T3SS) to inject effector proteins into epithelial cells. We hypothesized that EPEC might also inject proteins into DC processes to dampen immune recognition. Using a T3SS-linked fluorescence resonance energy transfer-based system we show that EPEC injects effectors into in vitro grown human myeloid DCs. Injected cells emit a blue signal due to cleavage of the green fluorescence resonance energy transfer-based substrate CCF2/AM by β-lactamase. When cultured with a mutant EPEC unable to translocate effector proteins, myeloid DCs show rapid activation of NF-κB, secrete large amounts of proinflammatory cytokines and increase expression of CD80, CD83, and CD86, whereas wild-type EPEC barely elicits cytokine production and shuts off nuclear translocation of NF-κB p65. By deleting effector protein genes, we identified NleE as being critical for this effect. Expression of NleE in HeLa cells completely prevented nuclear p65 accumulation in response to IL1-β, and luciferase production in an NF-κB reporter cell line. DCs cocultured with wild-type EPEC or NleE-complemented strains were less potent at inducing MLR. EPEC was also able to inject effectors into DCs sending processes through model gut epithelium in a transwell system and into Peyer's patch myeloid DCs. Thus, EPEC translocate effectors into human DCs to dampen the inflammatory response elicited by its own pathogen-associated molecular patterns.
منابع مشابه
Epithelial cells detect functional type III secretion system of enteropathogenic Escherichia coli through a novel NF-κB signaling pathway
Enteropathogenic Escherichia coli (EPEC), a common cause of infant diarrhea, is associated with high risk of mortality in developing countries. The primary niche of infecting EPEC is the apical surface of intestinal epithelial cells. EPEC employs a type three secretion system (TTSS) to inject the host cells with dozens of effector proteins, which facilitate attachment to these cells and success...
متن کاملA type III effector protease NleC from enteropathogenic Escherichia coli targets NF-κB for degradation
Many bacterial pathogens utilize a type III secretion system (T3SS) to inject virulence effector proteins into host cells during infection. Previously, we found that enteropathogenic Escherichia coli (EPEC) uses the type III effector, NleE, to block the inflammatory response by inhibiting IκB degradation and nuclear translocation of the p65 subunit of NF-κB. Here we screened further effectors w...
متن کاملThe Type III Secretion Effector NleE Inhibits NF-κB Activation
The complex host-pathogen interplay involves the recognition of the pathogen by the host's innate immune system and countermeasures taken by the pathogen. Detection of invading bacteria by the host leads to rapid activation of the transcription factor NF-kappaB, followed by inflammation and eradication of the intruders. In response, some pathogens, including enteropathogenic Escherichia coli (E...
متن کاملInhibition of NF-kB Signaling in Human Dendritic Cells by the Enteropathogenic Escherichia coli Effector Protein NleE
Intestinal dendritic cells (DCs) send processes between epithelial cells into the gut lumen to sample pathogens. Noninvasive entero-pathogenic Escherichia coli (EPEC) colonize the gut using a type three secretion system (T3SS) to inject effector proteins into epithelial cells. We hypothesized that EPEC might also inject proteins into DC processes to dampen immune recognition. Using a T3SS-linke...
متن کاملThe Type III Effectors NleE and NleB from Enteropathogenic E. coli and OspZ from Shigella Block Nuclear Translocation of NF-κB p65
Many bacterial pathogens utilize a type III secretion system to deliver multiple effector proteins into host cells. Here we found that the type III effectors, NleE from enteropathogenic E. coli (EPEC) and OspZ from Shigella, blocked translocation of the p65 subunit of the transcription factor, NF-kappaB, to the host cell nucleus. NF-kappaB inhibition by NleE was associated with decreased IL-8 e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 185 7 شماره
صفحات -
تاریخ انتشار 2010